

All other rights retained by the copyright owner.

Copyright © 2005 Frequentis. NASA has been granted permission to publish and disseminate this work as part of the Proceedings of the Fifth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop.

VHF CHANNEL OCCUPANCY MEASUREMENTS OVER CORE EUROPE

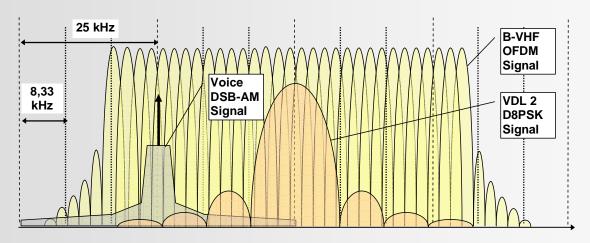
Presented by FREQUENTIS

Contents

- B-VHF Project
- Interference
- Overlay Deployment Concept
- Stationary Area and VHF Availability
- VHF Occupancy Measurements
- Evaluation of Data
- Conclusions

B-VHF Project

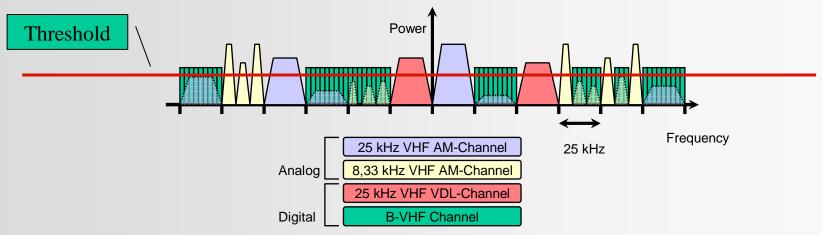
- Being conducted under 6th EC Framework programme
- Develops a digital cellular broadband aeronautical integrated VHF communications system
- Multi-Carrier (OFDM) system, based on CDMA
 - MC concept allows for combining non-contiguous parts of spectrum into single broadband channel
 - Parts of a broadband channel may be left unoccupied!
- Intended to be deployed as an overlay system in VHF COM band (118 – 137 MHz)
 - Initially providing (moderate-) additional capacity at "no cost"
 - Providing full capacity after transition phase (existing VHF system would be phased out/converted to B-VHF system)



Interference

- Interference depends on spectral masks, signal powers, relative position of broadband OFDM and NB spectra AND complex detailed mechanisms in a victim receiver
- B-VHF investigations are based on comparison of signal powers received within 25 kHz bandwidth, without differentiating between signal types
- Only "close" transmitters cause interference!

Page: 4 Version: 1.0



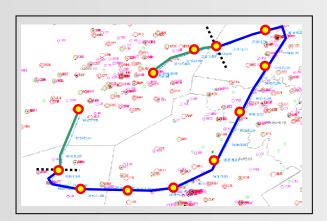
Overlay Deployment Concept

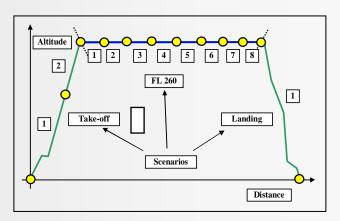
- Re-using selected VHF narrowband (NB) channels without mutual interference
 - Identify and re-use NB channels where received signal power remains below some threshold
 - B-VHF receivers can receive B-VHF signal in these gaps (with tolerable temporary interference or no interference at all)
 - B-VHF transmitter can transmit B-VHF signal in these gaps (using reduced transmitter power density than NB transmitters)

Page: 5 Version: 1.0

Stationary Area and VHF Availability

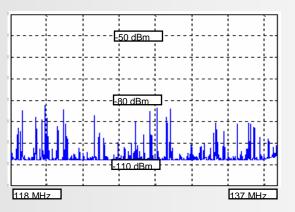
- Investigating the feasibility of the overlay deployment concept is an important goal of the B-VHF project!
- Different OFDM carrier sets are used in different areas
 - Allocated resources must remain "available" over entire area
- VHF spectrum availability (in B-VHF project):
 - Defined as percentage of all 761 VHF 25 kHz allocations where received NB signal powers (25 kHz bandwidth) remain below a given threshold within entire "stationary area"
 - Assessed for a range of hypothetical thresholds (-90 dBm ... -70 dBm, 2 dB steps) AND over spatial segments of different sizes (20 nm ... 60 nm ... 180 nm)
- Theoretical analysis AND practical measurements used for spectrum occupancy assessment



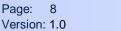


VHF Occupancy Measurements

- Dedicated flights AND ground measurements
- Representative flight: over UK, NL, BE, FR
 - Take-off, landing, cruising at different FLs, during peak hour
 - NB signal power received in 25 kHz bandwidth was recorded twice per second, independently for each of 761 VHF channels
 - Each flight (and data record) was split into segments (~60 nm)
 - System was calibrated to produce same power output as a receiver directly connected to an isotropic antenna

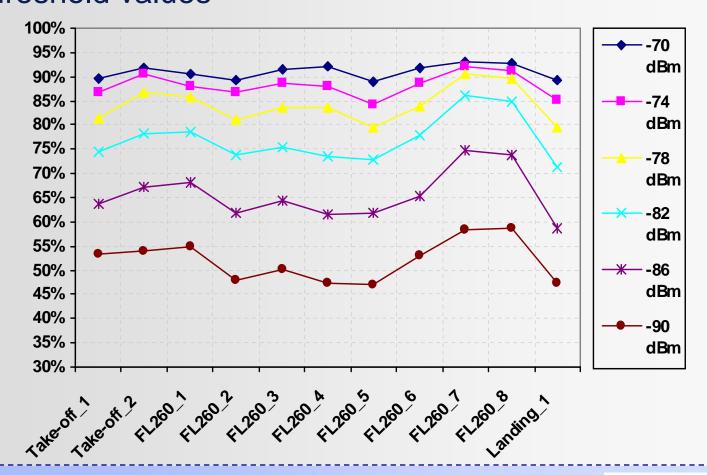

Evaluation of Data (1)

 Goal: produce VHF occupancy statistics over Core Europe, allow for an estimate of a stationary area


Histograms of peak received power produced for each

flight segment

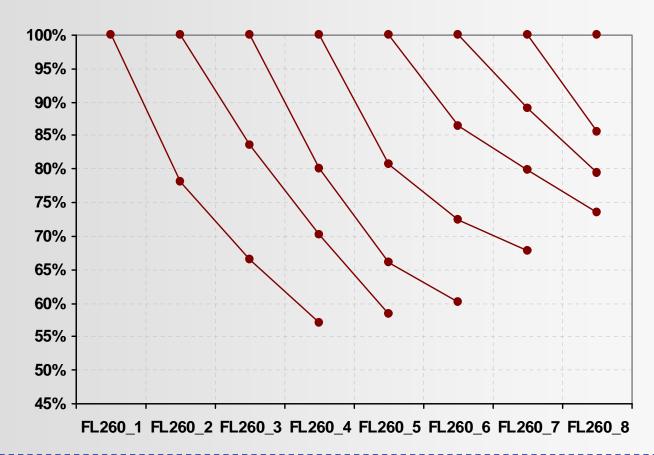
- VHF occupancy calculated per-flight
 - Typical case (occupancy is around an average value)
 - Worst case ("local" occupancy over some trajectory segment is much higher than for the rest of the flight)



Evaluation of Data (2)

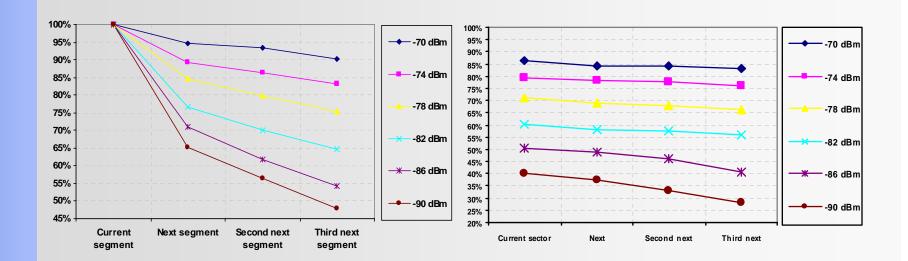
 VHF occupancy calculated per-segment, for different threshold values

Page: 9 Version: 1.0



Evaluation of Data (3)

 VHF occupancy calculated over several subsequent segments (once per threshold value)


Page: 10 Version: 1.0 **FREQUENTIS**

Evaluation of Data (4)

- Occupancy variation between the current segments and segments being at specified offset from the current one
- Occupancy evolution over all flights/segments of "similar" scenarios

FREQUENTIS

Conclusions

- Availability decreases with increased FL (as expected)
- For the whole measurement campaign (all flights, all scenarios) measured "per-segment" availability remained above 40%
- Availability over two, three and four successive segments remained above 37%, 33% and 27%, respectively
- This is typical- rather than worst case
 - Not all possible interferers were captured in measured data
- There may be enough "available" VHF capacity to provide limited scope of initial B-VHF services!
- Supplementary worst case analysis is being carried out, based on the deterministic user topology

